
ASIC Design Flow

By

P.Radhakrishnan,
Senior ASIC-Core Development Engineer,
Toshiba,
1060, Rincon Circle,
San Jose, CA 95132 (USA)

Jan 2000 (Issue-3)

ASIC Design Flow

Copyright © 2000 by P.Radhakrishnan. All rights reserved2

Contents

Introduction.. 3

Application Specific Integrated Circuits (ASIC)... 3

Frontend Design.. 4

Coding ... 4
Verification... 5
Synthesis ... 5

Backend Design... 6

Design Tools ... 6

Conclusion & Disclaimer... 7

Trademarks ... 7

ASIC Design Flow

Copyright © 2000 by P.Radhakrishnan. All rights reserved 3

 Introduction

This paper addresses some of the current trends that have been followed in the ASIC
design. The amount of information that can be provided about this topic is so vast
that one can write a complete book about the ASIC Design. However this paper
addresses the important two phases of an ASIC design so that students can get an
idea of how a chip is developed from concept to silicon.

Due to the high demand for speed and performance, most of the functions that were
implemented in the software are shifting towards the hardware. This means functions
like the communication protocols, DSP algorithms, audio and video compression
algorithms and many other functions find it most advantageous to be implemented in
the hardware for meeting the performance. Another factor that leads to this situation
is miniaturization. Due to the fast changes happening in the semiconductor
technology the ability to pack more circuits in a small area has increased many fold.
While the semiconductor companies are concentrating on the advanced technologies,
the designers are increasing the complexity of the design by adding more and more
logic in a single chip leading to the System-on-a-Chip (SoC) concept. This paper
throws light on some of the key steps involved in realizing an ASIC.

Application Specific Integrated Circuits (ASIC)

What is an ASIC? It is one other chip built to do a specific function. As mentioned
above there are high demands in the industry to implement algorithms in hardware.
As a result of this, many design groups implement specific functions in silicon in the
form of an ASIC.

In the olden days (about 10 years ago) the set of tools available for IC design were
very limited, and there were a large amount of manual interventions. These days’ ICs
are very huge and it is impossible to do them without the help of the EDA (Electronic
Design Automation) tools. The EDA tools play a major role in the ASIC design flow
and there are hundreds of companies functioning as EDA vendors supplying tools
that help in various phases of the chip design.

In the initial days when the EDA tools were evolving, tools were supporting the
schematic entry. Schematics are the pictorial representation of the gates and flops of
the design. You would draw the circuit in the same way as you would do in a paper.
The schematic editor will have many capabilities to describe hierarchical design and
also have capabilities to duplicate, cut, paste, etc. With these features one could build
a circuit and edit them with ease. The tools took these schematics as inputs and
generated database having connectivity information in them. The next version of
tools accepted text entries in the form of Boolean equations and worked on the
equation to get the desired logic. Since one can express any logic function in the form
of a sum-of-product (SOP) or product-of-sum (POS) terms, these tools took the
Boolean equations and run the optimizing algorithms to get the optimal logic which
would meet the function and the timing. These optimizations are similar to the
optimizations one wold do using methods like K-map.

The current days’ designers use what are known as HDL (Hardware Description
Language) for the design. HDL is a way of describing the logic and state machines

ASIC Design Flow

Copyright © 2000 by P.Radhakrishnan. All rights reserved4

through equations and behavioural descriptions. The tools understand these
descriptions and infer the necessary logic to implement the logic function.

Frontend Design

Fronend design is the first phase in the ASIC design where the logic for the chip is
built using the HDL. The designer would write codes that would represent the
function that he/she wants to implement. This logic realization is done using various
steps in which the design is coded, verified and mapped to the actual gates using a
process called synthesis. The rest of this section addresses to each one of these steps.

Coding
 In the industry there are several HDLs being used. However there are two common
hardware description languages that are very popular. They are, Verilog and VHDL.
Though VHDL is a much older candidate, Verilog became very popular due to its
“C” like syntax and constructs. There are plenty of arguments about which one is
easier or better. In the recent years support for Verilog has been the prime focus of
most of the EDA vendors. But there is always support for the VHDL codes also. No
matter which language one uses for coding, the intention here is to express the design
in the form of a behavioural description of code.

For those who are wondering how these codes would look like, there is a very simple
example given below. Complex functionalities will have numerous lines of codes
distributed in many files.

Example:1 (Verilog Code)

// This line is a comment

module test (clk, a, b, c, c_reg);

input clk, a, b;

output c,c_reg;

reg c_reg; wire c;

assign c = a || b; // Logical OR of the signals a and b

// output of the previous step is sent through a flop that

// is clocked by “clk”

always @(posedge clk)

 c_reg <= c;

endmodule

The above code describes a design that has two inputs, “a” and “b” and two ouptuts
“c” and “c_reg”. The output “c” is the logical OR of the two inputs. The output
“c_reg” is a registered version of “c”. i.e. output “c” is given to the input of a flop
that is clocked by “clk” and the “Q” output of the flop is connected to “c_reg”

ASIC Design Flow

Copyright © 2000 by P.Radhakrishnan. All rights reserved 5

Verification
Once the coding is completed it has to be checked if the design is doing its expected
function. This is called the functional verification. One can develop a test bench
using Verilog or VHDL to apply all possible stimuli at the input and check the output
that is generated by the code. For the above design it may not be a great deal to check
the possible combinations of the input. This is because there are only just four
possible combinations to be tested. But for a huge chip, this may be a very involved
job. Once the designer is sure that the code functions as expected, he will take the
code through the synthesis process to convert it into gates.

Synthesis
This is the next step in the frontend design. Using one of the various synthesis tools
available, the designer will target the design into equivalent gates and flops. The
output from the synthesis phase is often referred as the netlist, which represents the
connectivity of the cells used to realise the logic. These netlists can be in the Verilog
or VHDL format. There are other interchangable formats that are used in the industry
too. The tool will read the code and map the logic functions into the relevant
gates/flops and provide the connectivity also. For this the tool would need a target
library from which it can take the cells. The target libraries are provided by the
silicon vendor, which depends on the type of technology the designer intended to use
for the chip. A sythsized netlist from a synthesis tool will look like the one shown
below.

Example:1 (Verilog netlist)

module test (clk, a, b, c, c_reg);

input clk, a, b;

output c, c_reg;

 FD1 c_reg_reg (.Q(c_reg), .D(c), .CP(clk));

 OR2 U9 (.Z(c), .A(b), .B(a));

endmodule

The above representation is also in Verilog except that the file is having hard celles in
them instead of the behavioural descriptions. The cell “OR2” represents a two-input
OR gate from the technology library and the cell “FD1” represents a D-flip-flop. This
flop’s D-input is same as the output “c” and output-Q of the flop is connected to
“c_reg”. The flop is clocked by the signal “clk”. A pictorial representation of the
logic is shown below.

c

c_reg
b
a

clk

Z

FD1
CP

QD
B
A

OR2

ASIC Design Flow

Copyright © 2000 by P.Radhakrishnan. All rights reserved6

Since this netlist also represents the design, one can run the functional verification
tests againts this netlist also. What is more important is the Static Timing Analysis
(STA) on the netlist. STA reveals any potential timing problems like a setup or hold
violation in the design. If there are some timing errors, those have to be fixed. A great
deal of STA is explanined in the article released in July`99 issue-1.

Backend Design

The second major phase in the ASIC design is commonly known as the backend
where the cells in the netlist are placed on the die and then routed. There are many
tools available for this process also. The netlist, which has no violations is read into
the placement tool and placed within the die area according to the guidelines given to
the tool. Placement of cells depends on the connectivity and also on the distance
between the cells so as not to cause any timing violation. Cells that are placed far
apart will have a lengthy wire to connect them, and this will cause additional delay.
Another reason for more delay is, the fanout. When the fanout of a cell increases, this
increases the capacitance load on the driving cell. This will also cause output signal
to propagate slowly from one point to another. The placement tool will be given a set
of constraints that will indicate the timing requirements of the design. Hence the tool
will try to place the cells in such a way that there are no timing deteriorations. In
addition to the cells, the tool will place the IO pads also along the periphery of the die
so that the pins can be connected to the pads using metal bonding at a later stage.

Once the cells and IO pads are placed satisfactorily, the design is given to the routing
tool for routing. This tool will connect the cells according to the information in the
netlist. When the routing is completed the designer can extract the actual delay
contributed by the cells and the wires. These timing numbers are to be fed to the STA
tool once again to determine the conditions of violations based on the final routing. If
there are any violations, they need to be fixed by performing some netlist changes or
by improving the routing/placement or by doing both. This will take few iterations to
converge on the timing. A considerable amount of time is spent on these iterations
and the industry is trying to develop methodologies that will reduce these iterations
and are successful to some extent. When the backend phase is completed with no
violations, the design is converted into a datbase that will be used to build the mask
for the simiconductor processing. These data will be given to the processing units for
manufacturing the chip.

Design Tools

There are numerous companies in the industry, providing EDA tools for chip
designing. Some of them are mentioned here just to give an idea to the students.
Some of the companies like Synopsys, Cadence, Chrysalis, Avanti, etc. provide
various tools that provide support for the frontend and the backend design.

Verilog-XL, VCS, VHDL simulators are some the tools used for design entry
(coding) and simulations. These are the properties of companies like Cadence and
Synopsys. Synopsys is one of the major vendors of the chip design tools. Its
“DesignCompiler” has been used by designers all over the world for synthsis, in the
past many years. It has been introducing a series of tools for automating many of the
steps in the flow. Some other tools that can be mentioned here are “TestCompiler”

ASIC Design Flow

Copyright © 2000 by P.Radhakrishnan. All rights reserved 7

and “TestGen” for scan design, “ChipArchitect”, “FloorPlanManager” and so on.
Cadence and Avanti also have a series of tools that help the ASIC design flow both in
the frontend and in the backend design. Some of the tools of Cadence that are worth
mentioning are, SiliconEnsemble, GateEnsemble, BuildGates, CTGen, etc. (The
names of the tools are changed from time to time, but the essence of it is the same)
There are other companies like Altera, which has developed their own HDL called
AHDL (Altera-HDL) and a set of synthesis tools called MaxPlus. This company’s
tools are used for programmable devices. Altera was producing devices called
EPLDs (Erasable Programmable Logic Devices). Another company that can be
mentioned is Xillinx, which developed tools for programmable devices called FPGAs
(Field Programmable Gate Arrays). Though these tools are used for programmable
devices, the methodology is almost same as the ASIC development.

Conclusion & Disclaimer

This paper gives only a bird’s eye view of what is happening in the ASIC design
process. Though there are hundreds of finer steps involved in the process, this paper
does not provide a detailed explanation of those finer steps. Each of those steps can
be described in an individual paper by itself. The author wishes to eleborate those
topics in the future papers. The sample code given in this paper is very premitive and
the students are recommended to refer some books in the topics like Verilog and
VHDL. There are many excellent books available in these topics.

Trademarks
DesignCompiler, TestCompiler, TestGen, ChipArchitect and FloorPlanManager are the registered
trademarks of Synopsys, Inc., Mountain View, CA, USA.

SiliconEnsemble, GateEnsemble, BuildGates, CTGen are the registered trademarks of Cadence Design
Systems, Inc. San Jose, CA, USA

AHDL and Maxplus belong to Altera Corporation, San Jose, California 95134, USA.

